POWER SYSTEM DYNAMICS & STABILITY (POWER SYSTEM CONTROL AND AUTOMATION) **Duration: 3 hours** Max Marks: 70 Answer any FIVE questions. All questions carry equal marks 1. Explain the following: a) Importance of state space approach for modelling a 7 M synchronous machine. b) Modelling of various loads in power system networks. 7 M 2. Explain the following: a) Steady state stability 5 M 5 M b) Dynamic Stability c) Transient Stability 4 M 3. Discuss Synchronous machine stability by Eigen value approach. 14 M 4. Derive swing equation for single machine connected to infinite bus system. 14 M

I M.Tech-II Semester–Regular/Supplementary Examinations – July 2017

Code: EEPC2T1

PVP 12

5.	Explain the concept of the multi machine stability in detail	
		14 M
6.	Explain the effect of saturation, saliency and automatic	
	voltage regulators on stability.	14 M
7.	Explain the functioning of exciters with indirect acting	
	rheostatic type voltage regulator using suitable diagram	S.
		14 M
8.	Write short notes on the following	
	a) Rotating Amplifier	5 M
	b) Static excitation scheme	5 M

c) Brushless excitation system 4 M